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Abstract

Timoshenko beam theory is introduced for modelling the behavior of shaft. Complex variables are used
to represent the displacement, slope, moment and shear force, and the complex transfer matrix between the
variables at both ends of the shaft element is derived and the influence coefficients are analytically derived
for the general flexible rotor having two resilient bearings at both ends. Modelling and derivation of the
influence coefficients are based on the transfer matrix method. Simulated influence coefficients are
compared to the results using the finite element method based on Timoshenko beam theory. Simulation of
the influence coefficients could suggest the guideline for determining the positions of the balancing and
measuring planes and the running speed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

According to which analysis tool is used, a beam theory is limitedly adopted. In modelling a
thick shaft for rotor analysis Timoshenko beam theory is commonly introduced when using the
finite element method. Because of the feature of the method, however, the calculated results have
some error [1]. On the other hand, the transfer matrix method is a technique giving the
continuities (at the stations) to the parameters satisfying the equations of motion. Thus if a proper
theory, that is, the Timoshenko beam theory, is adopted, the exact results such as the exact
natural frequencies and the corresponding modes, which are continuous, are likely to be obtained.
Jun and Kim [1] have derived the analytic expression for the elastodynamic behavior of a

rotating thick shaft, and developed a method analyzing the natural vibrations for multi-step
rotating shaft. In that method, the analytic expression for a uniform shaft is considered to satisfy
the continuity conditions at the boundary where the cross-section changes. The method, however,

ARTICLE IN PRESS

*Tel.: +82-63-220-2614; fax: +86-63-220-2750.

E-mail address: junos@jeonju.ac.kr (O.S. Jun).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00393-6



has limitation in application to the model having disks. Based on the analytic expression of the
method, the author of this paper derives the transfer matrix between both the ends of a uniform
shaft to extend the application to the model having disks. Using the transfer matrix help us also to
expand the idea to the forced response analyses on rotors.
Influence coefficient is a transfer function on rotor, which is one of the tools used in rotor

balancing [2–4]. Influence coefficients are generally obtained by attaching trial masses on the
balancing planes of a rotor and by measuring the corresponding responses. They are also
calculated from the finite element method. In this study, the influence coefficients are analytically
derived for the general flexible rotor. Modelling and derivation of the influence coefficients are
based on the transfer matrix method.

2. Transfer matrix

2.1. Equation of motion

The elastodynamic behavior of a thick uniform shaft is described by considering the rotary
inertia and shear deformation of the cross-section. Especially for rotating shaft, the gyroscopic
effect due to the rotation is also considered. Including the torque in a power-transmitting shaft,
and introducing the complex displacement

uðx; tÞ ¼ yðx; tÞ þ jzðx; tÞ; ð1Þ

the equation of motion of the rotating shaft is written as follows [5]:
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where x is the axial co-ordinate and y and z are the displacements in the horizontal and vertical
directions, respectively. T is the torque on each end of the shaft, and E; G and r are Young’s
modulus, shear modulus and mass density, respectively. A and I are the area and area moment of
inertia of the cross-section, r0 is the radius of gyration, k is the inverse of the generally used form
factor, and O is the rotating speed.
The harmonic motion of natural frequency o can be separated in the variable uðx; tÞ as

uðx; tÞ ¼ UðxÞejot: ð3Þ

Substituting Eq. (3) into Eq. (2) results in the following equation:
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þ dU ¼ 0; ð4Þ
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where
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Using the four roots of the polynomial [1,6], the solution of Eq. (4) is expressed as

U ¼ p1e
l1x þ p2e

l2x þ p3e
l3x þ p4e

l4x: ð6Þ

Eq. (6) means that the elastodynamic behavior of the rotating shaft is dependent on l’s, which
are determined by several parameters, such as rotating speed O; natural frequency o; and
geometric and material properties of the shaft. The coefficients p1; p2; p3; p4 of Eq. (6) are also
complex values defined in a uniform shaft segment[1].

2.2. Complex state variable

Figs. 1 and 2 show the state variables on ith element in X2Z and X2Y planes, respectively.
Introducing the complex quantities yields the complex state variables as follows:

Ui ¼ Yi þ jZi;

ai ¼ fi þ jyi;

Mi ¼ Mz;i þ jMy;i;

Vi ¼ Vy;i þ jVz;i: ð7Þ

The slope a; moment M and shear force V have the following relations [5]:

a ¼
dU

dx
;
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M ¼ EI
d2U

dx2
� jT

dU

dx
;

V ¼ EI
d3U

dx3
� jT

d2U

dx2
þ rAr20ðo

2 � 2oOÞ
dU

dx
: ð8Þ

2.3. Transfer matrix of shaft element

The state variables at x ¼ 0; i.e., at the left-hand side of shaft element, are expressed from
Eqs. (6) and (8) as follows:

U0 ¼ p1 þ p2 þ p3 þ p4;

a0 ¼ l1p1 þ l2p2 þ l3p3 þ l4p4;

M0 ¼ g1p1 þ g2p2 þ g3p3 þ g4p4;

V0 ¼ h1p1 þ h2p2 þ h3p3 þ h4p4; ð9Þ

where

g1 ¼ EIl21 � jTl1; g2 ¼ EIl22 � jTl2;

g3 ¼ EIl23 � jTl3; g4 ¼ EIl24 � jTl4;

h1 ¼ EIl31 þ rAr20ðo
2 � 2oOÞl1 � jTl21;

h2 ¼ EIl32 þ rAr20ðo
2 � 2oOÞl2 � jTl22;

h3 ¼ EIl33 þ rAr20ðo
2 � 2oOÞl3 � jTl23;

h4 ¼ EIl34 þ rAr20ðo
2 � 2oOÞl4 � jTl24: ð10Þ

Expressing the coefficients p1; p2; p3; p4 in terms of U0; a0; M0; V0 from Eq. (9) and substituting
them into the expressions of Ul ; al ; Ml ; Vl at x ¼ l; the relation between state vectors of each side
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of shaft element having length l is written as follows:
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a34 ¼
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Eq. (11) is rewritten using the vectors and matrix in a simple form

fsgL
iþ1 ¼ ½F 	ifsgR

i ; ð12Þ

where ½F 	i is the transfer matrix of the ith shaft element. fsg is the complex state vector, subscript i
of the state vector is the node number, and superscript L and R denote the left- and right-hand
sides of the node, respectively. The state vectors are shown below in detail

fsgL
iþ1 ¼

Uiþ1

aiþ1

Miþ1

Viþ1

0
BBB@

1
CCCA

L

; fsgR
i ¼

Ui

ai

Mi

Vi

0
BBB@

1
CCCA

R

: ð13Þ

2.4. Transfer matrix at station

2.4.1. Unbalance effect

Fig. 3 shows node i viewed in Y2Z plane. The unbalance is defined as miei and makes an angle
bi in %Y � %Z co-ordinates fixed on the rotor.
Considering the damping force, which is assumed to be proportional to the velocity of the disk

center, and the synchronous circular whirl (o ¼ O), and introducing the complex variable yields

VR
i ¼ VL

i þ mio2U
ðLÞ
i � jcoU

ðLÞ
i þ mieiO2ejðOtþbiÞ: ð14Þ

2.4.2. Gyroscopic effect

Fig. 4 shows a disk under precession. In the figure, y and f denote the rotation angles along the
Y - and Z-axis, respectively. The spin speed O corresponds to the whirl speed in the case of
synchronous whirl. The gyroscopic effect of a disk is included.
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For the synchronous circular whirl (o ¼ O), the moment equilibrium equation becomes

MR
i ¼ ML

i þ ðoOJp � o2JtÞaL
i ; ð15Þ

where Jp and Jt stand for the polar and the transverse mass moment of inertia of disk,
respectively.
Considering the unbalance and moment effects (including gyroscopic effect) at the disk, the

following relation is represented between the both sides of node i:

Ui

ai

Mi

Vi

0
BBB@

1
CCCA

R

¼

1 0 0 0

0 1 0 0

0 ðoOJp � o2JtÞ 1 0

mio2 � jco 0 0 1

2
6664

3
7775
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ai

Mi

Vi

0
BBB@

1
CCCA

L

þ

0

0

0

mieiO2ejðOtþbiÞ

0
BBBB@

1
CCCCA: ð16Þ

2.5. Transfer matrix of resilient support at ends

Bearing support has resilient property. The bearings in this study are assumed to have the
equivalent, direct components, kYY ¼ kZZ; only ðkYZ ¼ kZY ¼ 0Þ:
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Resilient support at left end (Fig. 5)

VR
1 ¼ �kUL

1 ;

where UL
1 ¼ UR

1 :
Resilient support at right end

0 ¼ VL
N � kUL

N ;

where UL
N ¼ UR

N (Fig. 6).

3. Influence coefficient

3.1. Response at measuring point of simple rotor

A simple rotor to calculate the response using the transfer matrixes derived above is shown in
Fig. 7. The rotor is mounted on the resilient bearings at nodes 1 and 6. Node numbers 2 and 5 are
the measuring planes, 3 and 4 are the balancing planes positioned at both sides of rigid cylinder.
The state vectors of the model have the following relations:

f gM
2 ¼ F12f gR

1 ; f gL
3 ¼ F23f gM

2 ; f gR
2 ¼ S3f gL

3 þ f g3;

f gL
4 ¼ R34f gR

3 ; f gR
4 ¼ S4f gL

4 þ f g4;

f gM
5 ¼ F45f gR

4 ; f gL
6 ¼ F56f gM

5 ; ð17Þ
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Fig. 5. Resilient support at left end.
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where Si is the transfer matrix between the left- and right-hand sides of balancing plane i; which
has form of 4
 4 matrix of the right-hand side of Eq. (16). The vector f gi indicates the
unbalance, which has the fourth element only, on the balancing plane as shown in Eq. (16). f gM

i

is the state vector on the measuring plane at node i: Fij is the transfer matrix between nodes i and j
which are each side of the flexible shaft element.
The matrix R34 is the transfer matrix for the massless rigid cylinder, of which mass and

moments of inertia are separated into planes 3 and 4 where two disks are assumed. The cylinder
can be considered as a mass-distributed thick element. The transfer matrix R34 is replaced by F34;
and the transfer matrixes S3 and S4 are replaced by unit matrix as follows:

I ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775:

Seven expressions in Eq. (17) are integrated to one equation as follows:

f gL
6 ¼F56F45S4R34S3F23F12f gR

1

þ F56F45S4R34f g3 þ F56F45f g4: ð18Þ

Simplifying this equation using symbols, we have

f gL
6 ¼ Tf gR

1 þ Q326f g3 þ Q426f g4: ð19Þ

In Eq. (19), T denotes the transfer matrix between the each end of the entire rotor system, and
Q326 and Q426 are the transfer matrixes of the balancing planes at node 3 and node 4 to the right-
hand side end of rotor, respectively.
Considering the boundary conditions at nodes 1 and 6, the state vectors at nodes are written as

f gR
1 ¼

U1

a1
0

�k1U1

8>>><
>>>:

9>>>=
>>>;

and f gL
6 ¼

U6

a6
0

k6U6

8>>><
>>>:

9>>>=
>>>;
:
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From four algebra equations of motion (19), the slope and the shear force at node 1 are
expressed as follows:

UR
1 ¼

�ðq326
14 k6 � q326

44 Þ ðt12k6 � t42Þ

�q326
34 t32

�����
�����

ðt11k6 � t14k1k6 � t41 þ t44k1Þ ðt12k6 � t42Þ

ðt31 � t34k1Þ t32

�����
�����
ðm3e3O2ejðOtþb3ÞÞ

þ

�ðq426
14 k6 � q426

44 Þ ðt12k6 � t42Þ

�q426
34 t32

�����
�����

ðt11k6 � t14k1k6 � t41 þ t44k1Þ ðt12k6 � t42Þ

ðt31 � t34k1Þ t32

�����
�����
ðm4e4O2ejðOtþb4ÞÞ

¼ cU
3 ðm3e3O2ejðOtþb3ÞÞ þ cU

4 ðm4e4O2ejðOtþb4ÞÞ; ð20Þ

aR
1 ¼

ðt11k6 � t14k1k6 � t41 þ t44k1Þ �ðq326
14 k6 � q326

44 Þ

ðt31 � t34k1Þ �q326
34

�����
�����

ðt11k6 � t14k1k6 � t41 þ t44k1Þ ðt12k6 � t42Þ

ðt31 � t34k1Þ t32

�����
�����

ðm3e3O2ejðOtþb3ÞÞ

þ

ðt11k6 � t14k1k6 � t41 þ t44k1Þ �ðq426
14 k6 � q426

44 Þ

ðt31 � t34k1Þ �q426
34

�����
�����

ðt11k6 � t14k1k6 � t41 þ t44k1Þ ðt12k6 � t42Þ

ðt31 � t34k1Þ t32

�����
�����

ðm4e4O2ejðOtþb4ÞÞ

¼ ca3ðm3e3O2ejðOtþb3ÞÞ þ ca4ðm4e4O2ejðOtþb4ÞÞ; ð21Þ

where q326
ij and tij denote the (i; j) element of Q326 and T matrices, respectively.

Since the state vector at node 2 is f gM
2 ¼ F12f gR

1 ; where

f gR
1 ¼

U1

a1
0

�k1U1

8>>><
>>>:

9>>>=
>>>;
;

the response at the measuring plane of node 2 is

U2 ¼fðf 12
11 � f 12

14 k1ÞcU
3 þ f 12

12 ca3gðm3e3O2ejðOtþb3ÞÞ

þ fðf 12
11 � f 12

14 k1ÞcU
4 þ f 12

12 ca4gðm4e4O2ejðOtþb4ÞÞ: ð22Þ

In a similar manner, the response at the measuring plane of node 5 is expressed as

U5 ¼fðq125
11 � q125

14 k1ÞcU
3 þ q125

12 ca3 þ q325
14 gðm3e3O2ejðOtþb3ÞÞ

þ fðq125
11 � q125

14 k1ÞcU
4 þ q125

12 ca4 þ q425
14 gðm4e4O2ejðOtþb4ÞÞ: ð23Þ
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The responses at the measuring planes are expressed in a closed form in terms of the unbalances
at the balancing planes as shown in Eqs. (22) and (23).

3.2. Generalization of influence coefficient

Fig. 8 shows a general rotor having N nodes with two resilient bearings at both ends. Using
relations derived from a simple rotor, the equation of the entire system is written as follows:

f gL
N ¼ Tf gR

1 þ QB12Nf gB1 þ QB22Nf gB2 þ?þ QBi2Nf gBi þ?; ð24Þ

where superscripts and subscripts B1; B2; y, Bi denote the node number of balancing planes.
Considering the boundary conditions for the resilient bearings of stiffness kL and kR at nodes 1
and N; respectively, we obtain

UR
1 ¼

X
No:ðBiÞ

�ðqBi2N
14 kR � qBi2N

44 Þ ðt12kR � t42Þ

�qBi2N
34 t32

�����
�����

ðt11kR � t14kLkR � t41 þ t44kLÞ ðt12kR � t42Þ

ðt31 � t34kLÞ t32

�����
�����
ðmBieBiO2ejðOtþbBiÞÞ

¼
X

No:ðBiÞ

cU
BiðmBieBiO2ejðOtþbBiÞÞ; ð25Þ

aR
1 ¼

X
No:ðBiÞ

ðt11kR � t14kLkR � t41 þ t44kLÞ �ðqBi2N
14 kR � qBi2N

44 Þ

ðt31 � t34kLÞ �qBi2N
34

�����
�����

ðt11kR � t14kLkR � t41 þ t44kLÞ ðt12kR � t42Þ

ðt31 � t34kLÞ t32

�����
�����

ðmBieBiO2ejðOtþbBiÞÞ

¼
X

No:ðBiÞ

caBiðmBieBiO2ejðOtþbBiÞÞ: ð26Þ

The state vector at the measuring plane of node number Mi is expressed as follows:

f gM
Mi ¼ Q12Mif gR

1 þ
X

No:ðBiÞ

QBi2Mif gBi: ð27Þ

The summation on the right-hand side of Eq. (27) is effective for the unbalance (or balancing)
planes only having the node number smaller than the node number of the measuring plane, i.e.,
for BioMi:
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Fig. 8. General rotor model.
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The displacement UMi at the measuring plane is extracted from Eq. (27) as follows:

UMi ¼
X

No:ðBiÞ

ðq12Mi
11 � q12Mi

14 kLÞcU
Bi þ q12Mi

12 caBi þ qBi2Mi
14

� �
ðmBieBiO2ejðOtþbBiÞÞ: ð28Þ

The displacement at the measuring plane is calculated using Eq. (28). The terms
ðq12Mi

11 � q12Mi
14 kLÞcU

Bi þ q12Mi
12 caBi þ qBi2Mi

14

� �
in the right-hand side of the equation are the

influence coefficients, which indicate the relation between the displacement at Mi plane and the
unbalance at Bi plane. The term qBi2Mi

14 in Eq. (28) is effective only when BioMi:

4. Simulation

A simplified model is used for calculating the influence coefficients. It has a thick cylinder at
mid-span as shown in Fig. 9. The diameters of the left- and right-hand side shafts are 5 and 3 cm,
respectively, the length of both shafts is 30 cm. Both the diameter and thickness of the thick
cylinder are 10 cm. The rotor is mounted on the resilient bearings at each end.
The elasticity and density of the rotor material are given as 2:12
 106 kgf=cm

2 and
0:0078 kg=cm3; respectively. In the analysis the cylinder element at mid-span is considered as a
flexible shaft element having the balancing planes at its ends. The stiffness of the bearings is
1:0
 1010 N=m:
Expressing the responses at the measuring planes 2 and 5 in terms of the unbalances at nodes 3

and 4, we have

U2

U5

 !
¼

a23 a24
a53 a54

" #
m3e3O2ejðOtþb3Þ

m4e4O2ejðOtþb4Þ

 !
: ð29Þ

The influence coefficients a23; a24; a53 and a54 are calculated using Eq. (28) and shown in
Figs. 10–13. The dotted lines indicate the calculations using the finite element method based on
Timoshenko beam theory. The influence coefficients obtained by using the method of this research
and those obtained using the finite element method show the same trend, though they give the
different values in detail. The first four critical speeds are 608.7, 4550.3, 7952.6 and 17 707.4 rad/s
when using the present analysis model, and 608.9, 4597.3, 8118.6 and 19 343.1 rad/s when using
the finite element method, respectively. The finite element method gives higher values in critical
speed calculations. The phenomena have already been shown in the calculation of natural
frequencies for the given rotating speeds: the discrepancy appears more significantly for higher
modes [1].
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Fig. 9. Simulation model.
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Fig. 10. Influence coefficient a23 (solid line: using the transfer matrix method, dotted line: using the finite element

method).

Fig. 11. Influence coefficient a24 (solid line: using the transfer matrix method, dotted line: using the finite element

method).
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Fig. 12. Influence coefficient a53 (solid line: using the transfer matrix method, dotted line: using the finite element

method).

Fig. 13. Influence coefficient a54 (solid line: using the transfer matrix method, dotted line: using the finite element

method).
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The damping is not considered for this calculation because it is included when modelling the
disk element and this example does not use the disk element.
It is worth while to note that the anti-resonant frequencies exist between the first and second

critical speeds on the influence coefficients, a23 and a54: This is because the first and second modes
interfere destructively at the frequency. The measuring (output) planes are on the same side with
the balancing (input) planes. This shows the trend similar to that the driving-point frequency–
response function has an anti-resonance between the first and second resonant frequencies [7]. The
anti-resonant frequencies on a23 and a54; however, are different from each other because of the
different measurement position. On the other hand, the anti-resonant frequency between the two
critical speeds does not exist on the influence coefficients, a24 and a53:
Similar phenomena due to mode interference are also shown at other frequency ranges. The

mass attached on that plane near the anti-resonant frequencies has little effect on the response at
the plane. The influence coefficients is too insensitive to use for balancing in such frequency
ranges.
Fig. 14 reveals that the third critical speed peak does not appear clearly in the influence

coefficients a23 and a53 of Figs. 10 and 12. The position of balancing plane at node 3 of the
analysis model coincides with a nodal point of the third bending mode, thus the mass at the
position does little affect the responses.
Fig. 15 shows the influence coefficients a23 for the various bearing stiffnesses. The solid line and

dash–dot line are shown like a single line in the figure. This shows that the high stiffness bearing
does not change significantly the vibration characteristics. The low stiffness models are introduced
to simulate the foil and journal bearings: 1
 106 N=m for the foil bearing and 1
 108 N=m for
the journal bearing.
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Fig. 14. First four bending vibration modes.
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5. Conclusions

Complex transfer matrix relating the variables at each end of the elastodynamic shaft element
has been derived. The rotary inertia, shear deformation and gyroscopic effects are considered in
modelling.
Influence coefficient has analytically been derived for the general flexible rotor having two

resilient bearings at both ends. Given are specifications such as material properties, dimensions of
rotor, bearing stiffness and the information of positions of the balancing planes and measuring
points, the magnitude and phase of the influence coefficients became to be predictable.
Simulations using the proposed method have been compared to the results using the finite

element method. They showed very similar trends. Since the present method has straightforwardly
been derived from the equation of motion and been expressed in the closed and general form, the
exact estimations are expected.
The calculation results show that for the given measuring and balancing planes, some attention

shall be given when the rotation speed is chosen. Correction mass does not affect on the balancing
procedure near the anti-resonant frequency region because of the insensitiveness of the influence
coefficient. Prediction of influence coefficients is recommended, if available.
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Fig. 15. Influence coefficient a24 for various spring stiffness (dashed: 1
 106 N=m; dotted: 1
 108 N=m; solid:

1
 1010 N=m and dash-dot: 1
 1012 N=m).
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